On some nonlinear extensions of the angular momentum algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 282847
(http://iopscience.iop.org/0305-4470/28/10/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:31

Please note that terms and conditions apply.

On some nonlinear extensions of the angular momentum algebra

C Quesne $\ddagger \ddagger$
Physique Nucleaire Thérique et Physique Mathematique, Université Libre de Bruxelles, Campus de la Plaine CP229, Bd du Triomphe, B1050 Brussels, Belgium

Received 7 October 1994

Abstract

Deformations of the Lie algebras so(4), so(3,1) and e(3) that leave their so(3) subalgebra undeformed and preserve their coset structure are considered. It is shown that such deformed algebras are associative for any choice of the deformation parameters. Their Casimir operators are obtained and some of their unitary irreducible representations are constructed. For vanishing deformation, the unitary irreducible representations of the deformed algebras transform into those of the corresponding Lie algebras.that contain each of the so(3) unitary irreducible representations at most once. It is also proved that similar deformations of the Lie algebras su(3), $\mathrm{sl}(3, \mathbb{R})$ and of the semidirect sum of an Abelian algebra $\mathrm{t}(5)$ and so(3) do not lead to associative algebras.

1. Introduction

In recent years many works have been devoted to the study of deformations and extensions of Lie algebras and their applications in various branches of physics. Some of the studies have been are carried out in the mathematically well-defined framework of quasi-triangular Hopf algebras and deal with the so-called quantum groups and q-algebras (Drinfeld 1986, Jimbo 1985); other studies put less emphasis on the coalgebra structure, which is often dropped completely, but instead insist on preserving some other property of the Lie algebra that is deformed. In this second category one finds, for instance, some deformed algebras that can be realized in terms of deformed creation and annihilation operators (Fairlie and Zachos 1991, Fairlie and Nuyts 1994).

In the same class there are also deformed algebras that have a coset structure $g_{\mathrm{d}}=h+v_{\mathrm{d}}$ and which can be viewed as nonlinear extensions of an ordinary Lie algebra h (Roček 1991). This means that their generators can be separated into the generators E_{i} of h and some operators E_{α} transforming as a representation of h, and commuting among themselves to give a function of the E_{i} 's only. In other words, they satisfy the commutation relations

$$
\begin{equation*}
\left[E_{i}, E_{j}\right]=c_{i j}^{k} E_{k} \quad\left[E_{i}, E_{\alpha}\right]=\left(\tau_{i}\right)_{\alpha}^{\beta} E_{\beta} \quad\left[E_{\alpha}, E_{\beta}\right]=f_{\alpha \beta}\left(E_{i}\right) \tag{1.1}
\end{equation*}
$$

where $c_{i j}^{k}$ and $\left(\tau_{i}\right)_{\alpha}^{\beta}$ are the structure constants and matrix representations of h respectively, while $f_{\alpha \beta}\left(E_{i}\right)$ are formal power series in the E_{i} 's that are constrained by the associativity requirement, i.e. Jacobi identities, and by the condition that for some limiting values of the parameters, g_{d} transforms into some Lie algebra g with coset structure $g=h+v$. The

[^0]simplest example corresponding to $h=u(1)$ and $g=\operatorname{su}(2)$ or $\operatorname{su}(1,1)$ has been discussed in detail (Polychronakos 1990, Roček 1991).

An interest in such constructions in the infinite-dimensional case was shown some years ago in the context of quantum field theory and statistical physics models where they are known as W-algebras (Zamolodchikov 1986, Schoutens et al 1989). More recently, finite versions of these W-algebras have been introduced by considering symplectic reductions of finite-dimensional simple Lie algebras (Tjin 1992, de Boer and Tjin 1993); in particular, it was shown that the finite $W_{3}^{(2)}$-algebra, known as $\bar{W}_{3}^{(2)}$, is related to the simplest example of the deformed algebra g_{d} mentioned above.

The $\bar{W}_{3}^{(2)}$-algebra has recently appeared in various physical problems. Let us mention three of them. First, the deformed $s u(2)$ (or $s u(1,1)$) algebra may be considered as a dynamical symmetry algebra in some quantum many-body models with symmetrypreserving Hamiltonians, such as those occurring in quantum optics (Karassiov 1994, Karassiov and Klimov 1994 and references quoted therein); second, it is related to generalized deformed parafermions and, through the introduction of a Fermi- like oscillator Hamiltonian, provides a new algebraic description of the bound-state spectra of the Morse and Pőschl-Teller potentials (Quesne 1994). Moreover, by superposing these generalized deformed parafermions with ordinary bosons, one obtains some deformations of parasupersymmetric quantum mechanics with new and non-trivial properties (Beckers et al 1995). Further, the algebra $\bar{W}_{3}^{(2)}$ may be considered as the symmetry algebra of the two-dimensional anisotropic harmonic oscillator with frequency ration 2:1 (Bonatsos et al 1994).

Motivated by these applications, in this paper we shall consider another class of examples of deformed algebras g_{d} that should be physically relevant. The class corresponds to the case where the undeformed subalgebra h is the angular momentum algebra so(3) and the deformed subspace v_{d} is spanned by the $2 \lambda+1$ components of an so(3) irreducible tensor of rank λ. Special emphasis will be laid on the vector $(\lambda=1)$ and quadrupole $(\lambda=2)$ cases, corresponding to deformations of so(4) and su(3) (or of their non-compact or nonsemisimple variants) respectively.

In the following section, the relevant associativity conditions are established. The vector and quadrupole cases are then studied in detail in sections 3 and 4 respectively. Finally, section 5 contains the conclusion.

2. Nonlinear extensions of so(3)

Let the generators E_{i} and E_{α}, introduced in the previous section, be the spherical components $L_{m}=(-1)^{m} L_{-m}^{\dagger}, m=+1,0,-1$, and $T_{\mu}^{\lambda}=(-1)^{\mu} T_{-\mu}^{\lambda \dagger}, \mu=\lambda, \lambda-1, \ldots,-\lambda$, of an angular momentum operator and of an irreducible tensor of integer rank λ respectively. In such a case it is advantageous to write equation (1.1) in a coupled commutator form:

$$
\begin{align*}
& {[L, L]_{m}^{1}=-\sqrt{2} L_{m}} \tag{2.1a}\\
& {\left[L, T^{\lambda}\right]_{M}^{\Lambda}=-\sqrt{\lambda(\lambda+1)} \delta_{\Lambda, \lambda} \delta_{M, \mu} T_{\mu}^{\lambda}} \tag{2.1b}\\
& {\left[T^{\lambda}, T^{\lambda}\right]_{M}^{\Lambda}=f_{M}^{\Lambda}(L)} \tag{2.1c}
\end{align*}
$$

where $f^{\Lambda}(L)$ is an irreducible tensor of rank Λ, whose components can be written as formal power series in the vector operator L. The definition of coupled commutators and some of
their properties are reviewed in appendix 1. From equation (A1.2) it can be seen that the values of Λ in equation (2.1c) are restricted to odd integers, $\Lambda=1,3, \ldots, 2 \lambda-1$.

It has been shown by Gaskell et al (1978) that the number of linearly independent irreducible tensors of rank Λ whose components are monomials of degree n in L is equal to one if $n=\Lambda+2 k, k=0,1,2, \ldots$, and zero otherwise. Hence, the explicit form of the functions $f_{M}^{\Lambda}(L)$ is given by

$$
\begin{equation*}
f_{M}^{\Lambda}(L)=\gamma_{\Lambda} g_{\Lambda}\left(L^{2}\right)\left[\cdots\left[[L \times L]^{2} \times L\right]^{3} \times \cdots\right]_{M}^{\Lambda} \quad \Lambda=1,3, \ldots, 2 \lambda-1 \tag{2.2}
\end{equation*}
$$

where γ_{1} is some real normalization constant, $\gamma_{\Lambda}=1$ for $\Lambda \neq 1$,

$$
\begin{equation*}
g_{\Lambda}\left(L^{2}\right)=\sum_{k=0}^{\infty} a_{k}^{(\Lambda)} L^{2 k} \quad a_{k}^{(\Lambda)} \in \mathbb{R} \quad a_{0}^{(1)}=+1,0, \text { or }-1 \tag{2.3}
\end{equation*}
$$

is a formal power series in the scalar operator $L^{2}=\sum_{m}(-1)^{m} L_{m} L_{\sim m}$, and the last factor on the right-hand side of (2.2) is a 'stretched' product of Λ operators L. The deformed algebra g_{d} is therefore a $(2 K+1)$ th-degree algebra where $K=0,1,2, \ldots$, provided that $a_{k}^{(\Lambda)}=0$ if $2 k+\Lambda>2 K+1$ and at least one $a_{k}^{(\Lambda)}$ with $2 k+\Lambda=2 K+1$ is different from zero. As $K=0$ corresponds to an ordinary Lie algebra we shall henceforth refer to K as the deformation order.

We shall be concerned here with the cases where T^{λ} is an irreducible tensor of rank 1 (vector operator) or rank 2 (quadrupole operator). In the former case, we shall denote T_{m}^{1} by $A_{m}, m=+1,0,-1$; in equation (2.1c) Λ then takes the single value $\Lambda=1$. In the latter case, we shall denote T_{μ}^{2} by $Q_{\mu}, \mu=+2,+1,0,-1,-2$; in equation (2.1c), Λ can then take the values $\Lambda=1$ and $\Lambda=3$. For future reference it is helpful to state some relations among linearly dependent irreducible tensors:

$$
\begin{align*}
& {[L \times L]_{0}^{0}=-\frac{1}{\sqrt{3}} L^{2}} \tag{2.4a}\\
& {[L \times L]_{m}^{1}=-\frac{1}{\sqrt{2}} L_{m}} \tag{2.4b}\\
& {\left[[L \times L]^{2} \times L\right]_{m}^{1}=-\frac{2}{\sqrt{15}} L^{2} L_{m}+\frac{1}{2} \sqrt{\frac{3}{5}} L_{m}} \tag{2.4c}\\
& {\left[[L \times L]^{2} \times L\right]_{\mu}^{2}=-\sqrt{\frac{3}{2}}[L \times L]_{\mu}^{2}} \tag{2.4d}
\end{align*}
$$

The deformed algebra generated by L_{m} and T_{μ}^{λ} will be associative provided commutators (2.1) satisfy the Jacobi identity. For three irreducible tensors $T^{\lambda_{1}}, U^{\lambda_{2}}$ and $V^{\lambda_{3}}$, of ranks λ_{1}, λ_{2} and λ_{3}, respectively, the Jacobi identity can be written in a coupled form; as shown in equation (A1.5). If $\left(T^{\lambda_{1}}, U^{\lambda_{2}}, V^{\lambda_{3}}\right)=(L, L, L),\left(L, L, T^{\lambda}\right)$ or $\left(L, T^{\lambda}, T^{\lambda}\right)$ equation (A1.5) is automatically satisfied, whereas if $\left(T^{\lambda_{1}}, U^{\lambda_{2}}, V^{\lambda_{3}}\right)=\left(T^{\lambda}, T^{\lambda}, T^{\lambda}\right)$ it leads to the set of conditions

$$
\begin{align*}
& \sum_{\Lambda_{12}=1,3}^{2 \lambda-1}\left\{\delta_{\Lambda_{12}, \Lambda_{23}}-2(-1)^{\lambda-\Lambda} U\left(\lambda \lambda \Lambda \lambda ; \Lambda_{12} \Lambda_{23}\right)\right\}\left[T^{\lambda},\left[T^{\lambda}, T^{\lambda}\right]^{\Lambda_{12}}\right]_{M}^{\Lambda}=0 \\
& \Lambda_{23}=1,3, \ldots, 2 \lambda-1 \quad \Lambda=\left|\lambda-\Lambda_{23}\right|,\left|\lambda-\Lambda_{23}\right|+1, \ldots, \lambda+\Lambda_{23} \tag{2.5}
\end{align*}
$$

where $U\left(\lambda \lambda \Lambda \lambda ; \Lambda_{12} \Lambda_{23}\right)$ denotes a Racah coefficient in unitary form (Rose 1957). Note that for simplicity we shall now drop the component label of all irreducible tensors.

By using the numerical values of Racah coefficients one finds that the set of conditions (2.5) reduces to a single independent condition

$$
\begin{equation*}
\left[A,[A, A]^{1}\right]^{0}=0 \tag{2.6}
\end{equation*}
$$

in the vector case, and to two independent conditions

$$
\begin{align*}
& 2 \sqrt{2}\left[Q,[Q, Q]^{1}\right]^{1}+\sqrt{7}\left[Q,[Q, Q]^{3}\right]^{1}=0 \tag{2.7a}\\
& {\left[Q,[Q, Q]^{1}\right]^{3}-2\left[Q,[Q, Q]^{3}\right]^{3}=0} \tag{2.7b}
\end{align*}
$$

in the quadrupole case. In the next two sections we shall determine whether these identities are satisfied when the inner commutators are given by equations (2.1c), (2.2) and (2.3).

3. The vector case

In the vector case the deformed algebra g_{d} is defined by the commutation relations

$$
\begin{align*}
& {[L, L]^{1}=-\sqrt{2} L} \tag{3.1a}\\
& {[L, A]^{\Lambda}=-\sqrt{2} \delta_{\Lambda, 1} A} \tag{3.1b}\\
& {[A, A]^{1}=f^{1}(L)=-\sqrt{2} g\left(L^{2}\right) L=-\sqrt{2}\left(\sum_{k=0}^{\infty} a_{k} L^{2 k}\right) L} \tag{3.1c}
\end{align*}
$$

where the normalization constant γ_{1} has been set equal to $-\sqrt{2}$. A K th-order deformation corresponds to $a_{K} \neq 0$ and $a_{K+1}=a_{K+2}=\cdots=0$.

3.1. Associativity condition

The algebra g_{d} is associative provided A satisfies equation (2.6). By using equations (3.1) and (A1.4), equation (2.6) can be rewritten as

$$
\begin{equation*}
\left[\left[A, g\left(L^{2}\right)\right]^{1} \times L\right]^{0}=0 \tag{3.2}
\end{equation*}
$$

In the undeformed case where $g\left(L^{2}\right)=a_{0}$ this condition is trivially fulfilled and g_{d} then reduces to an ordinary Lie algebra g. According to whether $a_{0}=+1,-1$ or $0, g$ is the orthogonal algebra so(4), the pseudo-orthogonal algebra so(3,1) or the Euclidean algebra $e(3)$, which is a semidirect sum of an Abelian algebra $t(3)$ and $s o(3)$ (Biedenharn 1961, Naimark 1964, Bôhm 1979).

For a first-order deformation, condition (3.2) reduces to

$$
\begin{equation*}
\left[\left[A, L^{2}\right]^{1} \times L\right]^{0}=0 \tag{3.3}
\end{equation*}
$$

From equations (2.4a), (A1.4), (3.1b) and (A1.1) one obtains

$$
\begin{equation*}
\left[A, L^{2}\right]^{1}=2\left\{A+\sqrt{2}[L \times A]^{1}\right\} \tag{3.4}
\end{equation*}
$$

Moreover, standard tensor algebra and recoupling techniques (Rose 1957) show that

$$
\begin{equation*}
\left[[L \times A]^{1} \times L\right]^{0}=\left[L \times[L \times A]^{1}\right]^{0}=\left[[L \times L]^{1} \times A\right]^{0}=-\frac{1}{\sqrt{2}}\left[L \times\left. A\right|^{0}\right. \tag{3.5}
\end{equation*}
$$

where, in the last step, use has been made of equation (2.4b). By introducing equations (3.4) and (3.5) into the left-hand side of equation (3.3) one finds that the latter is identically satisfied.

It is now an easy task to show that if condition (3.2) is fulfilled for a K th-order deformation then it is also satisfied for a ($K+1$)th-order deformation. From equation (A1.4) one indeed obtains

$$
\begin{align*}
{\left[\left[A, L^{2 k+2}\right]^{1} \times L\right]^{0} } & =\left[\left[L^{2 k} \times\left[A, L^{2}\right]^{1}\right]^{1} \times L\right]^{0}+\left[\left[\left[A, L^{2 k}\right]^{1} \times L^{2}\right]^{1} \times L\right]^{0} \tag{3.6}\\
& =L^{2 k}\left[\left[A, L^{2}\right]^{1} \times L\right]^{0}+\left[\left[A, L^{2 k}\right]^{1} \times L\right]^{0} L^{2}
\end{align*}
$$

Hence, if the relation

$$
\begin{equation*}
\left[\left[A, L^{2 k}\right]^{1} \times L\right]^{0}=0 \tag{3.7}
\end{equation*}
$$

is identically satisfied for $\dot{k}=K$, then the same is true for $k=K+1$. This completes the proof by induction of the following result.

Proposition 1. For any choice of the deformation parameters $a_{k}, k=1,2, \ldots$, equation (3.1) defines an associative algebra g_{d}, which is a deformed so(4), so(3,1) or $\mathrm{e}(3)$ algebra according to whether $a_{0}=+1,-1$ or 0 .

Remark 1. The first-order deformation of so(4) has already been encountered elsewhere. It is indeed the dynamical symmetry algebra of a particle moving in a three-dimensional space with constant curvature under the influence of a Coulomb potential (Higgs 1979, Leemon 1979, Granovskii et al 1992, de Vos and van Driel 1993). In such a case the deformation parameter a_{1} is related to the space curvature.

3.2. Casimir operators

It is well known that the Lie algebras $g=s o(4)$, so(3,1) and $e(3)$ have two independent Casimir operators, which may be written as

$$
\begin{equation*}
C_{1}=a_{0} L^{2}+A^{2} \quad C_{2}=L \cdot A \tag{3.8}
\end{equation*}
$$

where, as usual, $\boldsymbol{L} \cdot \boldsymbol{A}$ denotes the scalar product $\sum_{m}(-1)^{m} L_{m} \dot{A}_{-m}$. The purpose of this subsection is to show that the operators (3.8) can be deformed so as to provide Casimir operators of the deformed algebra g_{d}.

The case of the second Casimir operator is easily solved. One finds the following result.
Proposition 2. When transforming from $g=s(4)$, so(3,1) or $\mathrm{e}(3)$ to g_{d}, defined in (3.1), the operator $L \cdot A$ remains a Casimir operator, which we shall denote by $C_{2 d}$.

Proof. By using (A1.4), (3.1) and (A1.2) one obtains

$$
\begin{equation*}
[A, L \cdot A]^{1}=-\frac{1}{\sqrt{2}}[A, A]^{1}+\frac{1}{\sqrt{2}} f\left(L^{2}\right)[L, L]^{1}=0 . \tag{3.9}
\end{equation*}
$$

This completes the proof as, by construction, $L \cdot A$ commutes with L.
The case of the first Casimir operator is more involved and has not actually been solved in full generality. We conjecture that (i) for any choice of the real constants a_{k} in equation (3.1) it is possible to find some real constants $b_{k}, k=1,2, \ldots$, such that

$$
\begin{equation*}
C_{1 \mathrm{~d}}=h\left(L^{2}\right)+A^{2} \quad \text { where } h\left(L^{2}\right)=\sum_{k=1}^{\infty} b_{k} L^{2 k} \tag{3.10}
\end{equation*}
$$

is a Casimir operator of the deformed algebra g_{d}, and (ii) for a K th-order deformation these constants are such that $b_{k}=0$ for $k>K+1$. We shall now proceed to prove that this conjecture is at least valid up to fourth order in the deformation.

For such a purpose we have first to determine the commutators of $L^{2 k}$ and A^{2} with A. We state the results in the form of two lemmas.

Lemma 1. For any $k \in \mathbb{N}^{+}$the generators of the deformed algebra g_{d}, defined in (3.1), satisfy the relation

$$
\begin{equation*}
\left[A, L^{2 k}\right]^{1}=\sum_{i=0}^{k-1} x_{i}^{(k)} L^{2 i} A+\sum_{i=0}^{k-1} y_{i}^{(k)} L^{2 i}[L \times A]^{1}+\sum_{i=0}^{k-2} z_{i}^{(k)} L^{2 i}\left[[L \times L]^{2} \times A\right]^{1} \tag{3.11}
\end{equation*}
$$

where $x_{i}^{(k)}, y_{i}^{(k)}, i=0,1, \ldots, k-1$, and $z_{i}^{(k)}, i=0,1, \ldots, k-2$, are some real constants fulfilling the recursion relations
$x_{i}^{(k)}=2 x_{i}^{(k-1)}+x_{i-1}^{(k-1)}+\frac{2}{3} \sqrt{2} y_{i-1}^{(k-1)}+2 \delta_{i, k-1} \quad i=0,1, \ldots, k-1$
$y_{i}^{(k)}=2 \sqrt{2} x_{i}^{(k-1)}+y_{i}^{(k-1)}-\sqrt{\frac{3}{10}} z_{i}^{(k-1)}+y_{i-1}^{(k-1)}+2 \sqrt{\frac{2}{15}} z_{i-1}^{(k-1)}+2 \sqrt{2} \delta_{i, k-1}$

$$
\begin{equation*}
i=0,1, \ldots, k-1 \tag{3.12b}
\end{equation*}
$$

$z_{i}^{(k)}=\sqrt{\frac{10}{3}} y_{i}^{(k-1)}-z_{i}^{(k-1)}+z_{i-1}^{(k-1)} \quad i=0,1, \ldots, k-2$
and the conditions $x_{0}^{(1)}=2, y_{0}^{(1)}=2 \sqrt{2}$.
Lemma 2. The generators of the deformed algebra g_{d}, defined in (3.1), satisfy the relation $\left[A, A^{2}\right]^{1}=-\sum_{i=0}^{\infty} u_{i} L^{2 i} A-\sum_{i=0}^{\infty} v_{i} L^{2 i}[L \times A]^{1}-\sum_{i=0}^{\infty} w_{i} L^{2 i}\left[[L \times L]^{2} \times A\right]^{1}$
where u_{i}, v_{l} and w_{i} are some real constants defined by the formal series
$u_{i}=\sum_{k=i}^{\infty} a_{k}\left(2 x_{i}^{(k)}+\frac{1}{3} \sqrt{2} y_{i-1}^{(k)}+2 \delta_{k, i}\right)$
$v_{i}=\sum_{k=i}^{\infty} a_{k}\left(\sqrt{2} x_{i}^{(k)}+\frac{3}{2} y_{i}^{(k)}-\frac{1}{2} \sqrt{\frac{3}{10}} z_{i}^{(k)}+\sqrt{\frac{2}{15}} z_{i-1}^{(k)}+2 \sqrt{2} \delta_{k, i}\right)$
$w_{i}=\sum_{k=i+1}^{\infty} a_{k}\left(\sqrt{\frac{5}{6}} y_{i}^{(k)}+\frac{1}{2} z_{i}^{(k)}\right)$

Table 1. Solution of the recursion relations (3.12) up to $k=5$.

	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
$x_{i}^{(2)}$	4	$\frac{20}{3}$	-	-	-
$y_{i}^{(2)}$	$6 \sqrt{2}$	$4 \sqrt{2}$	-	-	-
$z_{i}^{(2)}$	$4 \sqrt{\frac{5}{3}}$	-	-	-	-
$x_{i}^{(3)}$	8	$\frac{76}{3}$	14	-	-
$y_{i}^{(3)}$	$12 \sqrt{2}$	$26 \sqrt{2}$	$6 \sqrt{2}$	-	-
$z_{i}^{(3)}$	$8 \sqrt{\frac{5}{3}}$	$4 \sqrt{15}$	-	-	-
$x_{i}^{(4)}$	16	$\frac{224}{3}$	88	24	-
$y_{i}^{(4)}$	$24 \sqrt{2}$	$88 \sqrt{2}$	$68 \sqrt{2}$	$8 \sqrt{2}$	-
$z_{i}^{(4)}$	$16 \sqrt{\frac{5}{3}}$	$16 \sqrt{15}$	$8 \sqrt{15}$	-	-
$x_{i}^{(5)}$	32	$\frac{592}{3}$	368	$\frac{680}{3}$	$\frac{110}{3}$
$y_{i}^{(5)}$	$48 \sqrt{2}$	$248 \sqrt{2}$	$352 \sqrt{2}$	$140 \sqrt{2}$	$10 \sqrt{2}$
$z_{i}^{(5)}$	$32 \sqrt{\frac{5}{3}}$	$48 \sqrt{15}$	$160 \sqrt{\frac{5}{3}}$	$40 \sqrt{\frac{5}{3}}$	-

in terms of the solution of equation (3.12).
The proofs of lemmas 1 and 2 are sketched in appendix 2 and the solutions obtained for $x_{i}^{(k)}, y_{i}^{(k)}$ and $z_{i}^{(k)}, k \leqslant 5$, by solving equation (3.12) are listed in table 1.

Finally, by combining lemmas 1 and 2 the following result can be easily derived (for details see appendix 2).

Proposition 3. Up to fourth order in the deformation, the operator $C_{\text {ld }}$ defined in equation (3.10), where

$$
\begin{array}{ll}
b_{1}=a_{0}+a_{1} & b_{2}=\frac{1}{2} a_{1}+\frac{4}{3} a_{2}-\frac{1}{3} a_{3}+\frac{8}{15} a_{4} \quad b_{3}=\frac{1}{3} a_{3}+\frac{5}{3} a_{3}-\frac{16}{15} a_{4} \\
b_{4}=\frac{1}{4} a_{3}+2 a_{4} & b_{5}=\frac{1}{5} a_{4} \quad . \quad b_{6}=b_{7}=\cdots=0 \tag{3.15}
\end{array}
$$

is a Casimir operator of the algebra g_{d} defined in (3.1).

3.3. Unitary irreducible representations

In this subsection we will study the deformations of some unitary irreducible representations (unirreps) of the Lie algebras $g=s o(4)$, so $(3,1)$ and $e(3)$ when the algebras are replaced by their corresponding deformed algebras g_{d}.

The unirreps considered are those which have a representation space \mathcal{R} that contains each of the representation spaces $\mathcal{R}^{l}, l=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$, of so(3) at most once (Biedenharn 1961, Naimark 1964, Bőhm 1979). Such unirreps can be characterized by
(i) $[p, q]$ where $p \geqslant|q|$, and $p,|q| \in \mathbb{N}$ or $p,|q| \in \frac{1}{2} \mathbb{N}$, in the so(4) case;
(ii) $\left(l_{0}, c\right)$ where either $l_{0} \in\left\{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\right\}$ and $c \in \mathbb{R}$, or $l_{0}=0$ and $c=\mathrm{i} \nu, \nu \in \mathbb{R}$, in the so(3,1) case;
(iii) $\left(l_{0}, \epsilon\right)$ where $I_{0} \in\left\{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\right\}$ and $\in \in \mathbb{R}$, in the $\mathrm{e}(3)$ case, where the latter are obtained from those of so(3,1) by an Inönü-Wigner contraction.

In cases (i) and (ii) (or (iii)) the decomposition of their representation space is given by

$$
\begin{align*}
& \mathcal{R}=\sum_{l=l_{0}, l_{0}+1}^{l_{1}} \oplus \mathcal{R}^{l} \tag{3.16a}\\
& \mathcal{R}=\sum_{l=l_{0}, l_{0}+1}^{\infty} \oplus \mathcal{R}^{l} \tag{3.16b}
\end{align*}
$$

where in (3.16a) the minimum l value is defined by $l_{0}=|q|$ and the maximum l value is defined by $l_{1}=p$.

The reduced matrix elements of the vector operator A and the eigenvalues of the Casimir operators can be written as \dagger
$\langle[p, q] l\|A\|[p, q] l\rangle=\frac{q(p+1)}{[l(l+1)]^{1 / 2}}$
$\langle[p, q] l-1\|A\|[p, q] l\rangle=-\left[\frac{(l-q)(l+q)(p+1-l)(p+1+l)}{l(2 l-1)}\right]^{1 / 2}$
and

$$
\begin{equation*}
\left\langle C_{1}\right\rangle=p(p+2)+q^{2} \quad\left\langle C_{2}\right\rangle=q(p+1) \tag{3.18}
\end{equation*}
$$

for so(4),

$$
\begin{align*}
& \left\langle\left(l_{0}, c\right) l\|A\|\left(l_{0}, c\right) l\right\rangle=-\frac{l_{0} c}{[l(l+1)]^{1 / 2}} \\
& \left\langle\left(l_{0}, c\right) l-1\|A\|\left(l_{0}, c\right) l\right\rangle=-\left[\frac{\left(l-l_{0}\right)\left(l+l_{0}\right)\left(c^{2}+l^{2}\right)}{l(2 l-1)}\right]^{1 / 2} \tag{3.19}
\end{align*}
$$

and

$$
\begin{equation*}
\left\langle C_{1}\right\rangle=c^{2}-l_{0}^{2}+1 \quad\left\langle C_{2}\right\rangle=-l_{0} c \tag{3.20}
\end{equation*}
$$

for $\mathrm{so}(3,1)$,

$$
\begin{align*}
& \left\langle\left(l_{0}, \epsilon\right) l\|A\|\left(l_{0}, \epsilon\right) l\right\rangle=-\frac{l_{0} \epsilon}{[l(l+1)]^{1 / 2}} \\
& \left\langle\left(l_{0}, \epsilon\right) l-1\|A\|\left(l_{0}, \epsilon\right) l\right\rangle=-|\epsilon|\left[\frac{\left(l-l_{0}\right)\left(l+l_{0}\right)}{l(2 l-1)}\right]^{1 / 2} \tag{3.21}
\end{align*}
$$

and

$$
\begin{equation*}
\left\langle C_{1}\right\rangle=\epsilon^{2} \quad\left\langle C_{2}\right\rangle=-l_{0} \epsilon \tag{3.22}
\end{equation*}
$$

for $\mathrm{e}(3)$. In all cases the remaining reduced matrix elements of A can be obtained from the relation

$$
\begin{equation*}
\langle l+1\|A\| l\rangle=-\left(\frac{2 l+1}{2 l+3}\right)^{1 / 2}\langle l\|A\| l+1\rangle \tag{3.23}
\end{equation*}
$$

valid for any vector operator.
By introducing the function $G\left(l^{2}, l_{0}^{2}\right)$, defined by

$$
\begin{align*}
G\left(l^{2}, l_{0}^{2}\right) & =\frac{1}{l^{2}-l_{0}^{2}} \sum_{j=l_{0}}^{l-1}(2 j+1) g(j(j+1)) \tag{3.24}\\
& =a_{0}+\frac{1}{2} a_{1}\left(l^{2}+l_{0}^{2}-1\right)+\frac{1}{3} a_{2}\left[\left(l^{2}-1\right)^{2}+l_{0}^{2}\left(l^{2}-1\right)+l_{0}^{2}\left(l_{0}^{2}-1\right)\right]+\cdots
\end{align*}
$$

for $l>l_{0}$, we easily find the following results.
\dagger The phase convention adopted in this paper is that of Biedenharn (1961) which differs from that of Naimark (1964) and B6hm (1979).

Proposition 4. Provided that the deformation parameters $a_{k} k>0$, are chosen in such a way that all quantities under square roots remain non-negative, then the unirreps $[p, q]$, (l_{0}, c) and (l_{0}, ϵ) of so(4), so(3,1) and e(3) respectively, can be deformed into unirreps of the corresponding deformed algebras g_{d}. The reduced matrix elements of A and the eigenvalues of the Casimir operators become
$\langle[p, q] l\|A\|[p, q] l\rangle=q(p+1)\left[\frac{G\left((p+1)^{2}, q^{2}\right)}{l(l+1)}\right]^{1 / 2}$
$\langle[p, q] l-1\|A\|[p, q] l\rangle=-\left\{\frac{(l-q)(l+q)\left[(p+1)^{2} G\left((p+1)^{2}, q^{2}\right)-l^{2} G\left(l^{2}, q^{2}\right)\right]}{l(2 l-1)}\right\}^{1 / 2}$
and

$$
\begin{align*}
\left\langle C_{1 d}\right\rangle= & h(|q|(|q|+1))-(|q|+1) G\left((|q|+1)^{2}, q^{2}\right)+(p+1)^{2} G\left((p+1)^{2}, q^{2}\right) \\
= & \left\langle C_{1}\right\rangle+\frac{1}{2} a_{1}\left[\left\langle C_{1}\right\rangle\left(\left\langle C_{1}\right\rangle+1\right)-\left\langle C_{2}\right\rangle^{2}\right]+\frac{1}{3} a_{2}\left\langle C_{1}\right\rangle\left[\left\langle C_{1}\right\rangle\left(\left\langle C_{1}\right\rangle+1\right)-2\left\langle C_{2}\right\rangle^{2}\right] \\
& \quad+\cdots \\
\left\langle C_{2 d}\right\rangle= & q(p+1)\left[G\left((p+1)^{2}, q^{2}\right)\right]^{1 / 2} \\
= & \left\langle C_{2}\right\rangle\left[1+\frac{1}{2} a_{1}\left\langle C_{1}\right\rangle+\frac{1}{3} a_{2}\left(\left\langle C_{1}\right\rangle^{2}-\left\langle C_{2}\right\rangle^{2}\right)+\cdots\right]^{1 / 2} \tag{3.26}
\end{align*}
$$

in the deformed so(4) case,
$\left\langle\left(l_{0}, c\right) l\|A\|\left(l_{0}, c\right) l\right\rangle=-\frac{l_{0} c}{[l(l+1)]^{1 / 2}}$
$\left\langle\left(l_{0}, c\right) l-1\|A\|\left(l_{0}, c\right) l\right\rangle=-\left\{\frac{\left(l-l_{0}\right)\left(l+l_{0}\right)\left[c^{2}-l^{2} G\left(l^{2}, l_{0}^{2}\right)\right]}{l(2 l-1)}\right\}^{1 / 2}$
and

$$
\begin{align*}
\left\langle C_{1 d}\right\rangle & =h\left(l_{0}\left(l_{0}+1\right)\right)-\left(l_{0}+1\right) G\left(\left(l_{0}+1\right)^{2}, l_{0}^{2}\right)+c^{2} \\
& =\left\langle C_{1}\right\rangle+\frac{1}{2} a_{1} l_{0}^{2}\left(l_{0}^{2}-1\right)+\frac{1}{3} a_{2} l_{0}^{2}\left(l_{0}^{2}-1\right)^{2}+\cdots \\
\left\langle C_{2 d}\right\rangle & =\left\langle C_{2}\right\rangle=-l_{0} c \tag{3.28}
\end{align*}
$$

in the deformed so $(3,1)$ case, while for deformed $\mathrm{e}(3)$ they can be obtained by substituting ϵ for c in equations (3.27) and (3.28).

Proof. Whenever all a_{k} 's for which $k>0$ go to zero, equations (3.25)-(3.28) and their counterparts for e(3) transform into the undeformed results contained in equations (3.17)(3.22) respectively. Alternatively, for arbitrary values of the a_{k} 's satisfying the hypothesis the validity of the equations can be checked by direct substitution into the commutation relation (3.1c) and the definitions of $C_{1 d}$ and $C_{2 \mathrm{~d}}$.

Remark. For some choices of the deformation parameters it may happen that the unirreps of g_{d} considered in proposition 4 do not exhaust the class of unirreps which have a representation space that contains each of the representation spaces of so(3) at most once. The existence of 'extra' representations, which have no counterpart for the undeformed algebra, has already been noted in the deformed su(2) case (Roček 1991).

4. The quadrupole case

In the quadrupole case the deformed algebra g_{d} is defined by the commutation relations

$$
\begin{align*}
& {[L, L]^{1}=-\sqrt{2} L} \tag{4.1a}\\
& {[L, Q]^{\Lambda}=-\sqrt{6} \delta_{\Lambda, 2} Q} \tag{4.1b}\\
& {[Q, Q]^{1}=f^{1}(L)=3 \sqrt{10} g_{1}\left(L^{2}\right) L=3 \sqrt{10}\left(\sum_{k=0}^{\infty} a_{k}^{(1)} L^{2 k}\right) L} \tag{4.1c}\\
& {[Q, Q]^{3}=f^{3}(L)=g_{3}\left(L^{2}\right)\left[[L \times L]^{2} \times L\right]^{3}} \\
& =\left(\sum_{k=0}^{\infty} a_{k}^{(3)} L^{2 k}\right)\left[[L \times L]^{2} \times L\right]^{3} \tag{4.1d}
\end{align*}
$$

where the normalization constant γ_{1} has been set equal to $3 \sqrt{10}$. The algebra is associative providing that Q satisfies equations (2.7a) and (2.7b).

In the undeformed case where the algebra g_{d} reduces to an ordinary Lie algebra g, one has $a_{k}^{(1)}=0, k=1,2, \ldots$, and $a_{k}^{(3)}=0, k=0,1, \ldots$ According to whether $a_{0}^{(1)}=+1$, -1 , or $0, g$ is the special unitary algebra su(3) (Elliott 1958a,b), the special linear algebra $\mathrm{sl}(3, \mathrm{R})$ (Weaver and Biedenharn 1972) or the semidirect sum of an Abelian algebra $t(5)$ and so(3) (Ui 1970, Weaver et al 1973).

If we restrict ourselves to a first-order deformation, equations (4.1c) and (4.1d) become

$$
\begin{align*}
& {[Q, Q]^{1}=3 \sqrt{10} \epsilon L+\alpha L^{2} L} \tag{4.2a}\\
& {[Q, Q]^{3}=\beta\left[[L \times L]^{2} \times L\right]^{3}} \tag{4.2b}
\end{align*}
$$

where α, β and ϵ are defined by $\alpha=3 \sqrt{10} a_{1}^{(1)}, \beta=a_{0}^{(3)}$ and $\epsilon=a_{0}^{(1)}=+1,-1$ or 0 . By substituting equations (4.2a) and (4.2b) into equations (2.7a) and (2.7b) and taking equation (4.1b) into account we obtain the two associativity conditions

$$
\begin{align*}
& 2 \sqrt{2} \alpha\left[Q, L^{2} L\right]^{1}+\sqrt{7} \beta\left[Q,\left[[L \times L]^{2} \times L\right]^{3}\right]^{1}=0 \tag{4.3a}\\
& \alpha\left[Q, L^{2} L\right]^{3}-2 \beta\left[Q,\left[[L \times L]^{2} \times L\right]^{3}\right]^{3}=0 \tag{4.3b}
\end{align*}
$$

Straightforward tensor algebra leads to the following results:

$$
\begin{align*}
& {\left[Q, L^{2} L\right]^{\Lambda}=} 2 \sqrt{3}\left\{[\sqrt{3}-U(11 \Lambda 2 ; 12)][L \times Q]^{\Lambda}\right. \\
&\left.+\sqrt{2} U(11 \Lambda 2 ; 22)\left[[L \times L]^{2} \times Q\right]^{\Lambda}\right\} \\
& {\left[Q,\left[[L \times L]^{2} \times L\right]^{3}\right]^{\Lambda}=\sqrt{3}\{[\sqrt{7} U(22 \Lambda 1 ; 23)} \\
&-2 \sqrt{2 \Lambda(\Lambda+1)} U(22 \Lambda 1 ; \Lambda 3) U(21 \Lambda 1 ; 22)][L \times Q]^{\Lambda} \\
&\left.+3 \sqrt{2} U(21 \Lambda 2 ; 23)\left[[L \times L]^{2} \times Q\right]^{\Lambda}\right\} \tag{4.4}
\end{align*}
$$

valid for $\Lambda=1$ or 3 . By replacing Racah coefficients by their numerical values in equation (4.4), conditions (4.3a) and (4.3b) can be rewritten as

$$
\begin{align*}
& (6 \sqrt{10} \alpha-7 \beta)[L \times Q]^{1}+\sqrt{6}(2 \sqrt{10} \alpha+7 \beta)\left[[L \times L]^{2} \times Q\right]^{1}=0 \tag{4.5a}\\
& 2(\sqrt{10} \alpha+3 \beta)[L \times Q]^{3}+(\sqrt{10} \alpha-9 \beta)\left[[L \times L]^{2} \times Q\right]^{3}=0 \tag{4.5b}
\end{align*}
$$

Since they cannot be satisfied for any choice of the deformation parameters α and β we conclude that for a first-order deformation the algebra g_{d}, defined in (4.1), is not associative contrary to what occurs for the algebra (3.1) in the vector case. Therefore, we shall not pursue the analysis of the quadrupole case any further.

5. Conclusion

In this paper we have established that deformations of the Lie algebras so(4), so(3,1) and $e(3)$ that leave their so(3) subalgebra undeformed and preserve their coset structure exist. We have proved that the Casimir operators of these Lie algebras can be deformed so as to provide the corresponding operators for the deformed algebras. Moreover, we have constructed those unirreps of the deformed algebras that, for vanishing deformation, transform into the unirreps of the corresponding Lie algebras belonging to an important class of representations.

In contrast, we have shown that a similar deformation of the Lie algebras su(3), sl(3, $\mathbb{R})$ and of the semidirect sum of $t(5)$ and $s o(3)$ is not possible because the associativity conditions are violated for a first-order deformation.

It should be stressed that the deformations of so(4), so(3,1), and $e(3)$ studied here differ from the standard q-algebras $\mathrm{so}_{q}(4), \mathrm{so}_{q}(3,1)$ and $\mathrm{e}_{q}(3)$ (Drinfeld 1986, Jimbo 1985, Celeghini et al 1991, Chakrabarti 1993), as well as from an alternative deformation of the orthogonal and pseudo-orthogonal Lie algebras proposed by Gavrilik and Klimyk (1991) (see also Gavrilik 1993). In both these approaches, the so(3) subalgebra is indeed deformed contrary to what occurs in the algebras considered here. Since rotational invariance and angular-momentum conservation are important properties of many physical systems, one may hope that the deformed algebras introduced in this paper will prove more relevant to applications than those previously considered.

Some problems where the coset structure so(4) and/or so(3) is important can be found in standard quantum mechanics (e.g. that of a particle in a Coulomb potential (Biedenharn 1961)), as well as in parasupersymmetric quantum mechanics with three parasupercharges (Debergh and Nikitin 1995). Deformations of so(4) preserving that coset structure may therefore be expected to play a role in similar contexts. It is already known that the first-order deformation of so(4) is the symmetry algebra of a particle in a Coulomb potential when the space has a constant curvature (Higgs 1979, Leemon 1979, Granovskii et al 1992, de Vos and van Driel 1993). All of the general results derived in this paper, therefore, apply to such a problem. At a more phenomenological level, deviations from hydrogenic spectra that are found for many-electron atoms or excitons in semiconductors might be accounted for by some deformations of so(4). Similarly, deformations of parasupersymmetric quantum mechanics with three parasupercharges might lead to some parasupersymmetric Hamiltonians with new and non-trivial properties as happens in the case of two parasupercharges (Debergh and Nikitin 1995). We hope to return to some of these problems in forthcoming publications.

Appendix 1. Definition and properties of coupled commutators

The purpose of this appendix is to review the definition and some useful properties of coupled commutators.

The coupled commutator of two so(3) irreducible tensors $T^{\lambda_{1}}$ and $U^{\lambda_{2}}$, of ranks λ_{1} and λ_{2} respectively, is defined by

$$
\begin{equation*}
\left[T^{\lambda_{1}}, U^{\lambda_{2}}\right]_{M}^{\Lambda}=\sum_{\mu_{1} \mu_{2}}\left\langle\lambda_{1} \mu_{1}, \lambda_{2} \mu_{2} \mid \Lambda M\right\rangle\left[T_{\mu_{1}}^{\lambda_{1}}, U_{\mu_{2}}^{\lambda_{2}}\right] \tag{A1.1}
\end{equation*}
$$

in terms of an ordinary commutator [,] and of an su(2) Wigner coefficient \{, 1\}. By using a symmetry property of the Wigner coefficient (Rose 1957) equation (Al.1) can be written alternatively as

$$
\begin{align*}
{\left[T^{\lambda_{1}}, U^{\lambda_{2}}\right]_{M}^{\Lambda} } & =\left[T^{\lambda_{1}} \times U^{\lambda_{2}}\right]_{M}^{\Lambda}-(-1)^{\lambda_{1}+\lambda_{2}-\Lambda}\left[U^{\lambda_{2}} \times T^{\lambda_{1}}\right]_{M}^{\Lambda} \tag{A1.2}\\
& =-(-1)^{\lambda_{1}+\lambda_{2}-\Lambda}\left[U^{\lambda_{2}}, T^{\lambda_{1}}\right]_{M}^{\Lambda}
\end{align*}
$$

where

$$
\begin{equation*}
\left[T^{\lambda_{1}} \times U^{\lambda_{2}}\right]_{M}^{\Lambda}=\sum_{\mu_{1} \mu_{2}}\left\langle\lambda_{1} \mu_{1}, \lambda_{2} \mu_{2} \mid \Lambda M\right\rangle T_{\mu_{1}}^{\lambda_{1}} U_{\mu_{2}}^{\lambda_{2}} \tag{A1.3}
\end{equation*}
$$

For three irreducible tensors $T^{\lambda_{1}}, U^{\lambda_{2}}$ and $V^{\lambda_{3}}$ the well known relation $[A, B C]=$ $[A, B] C+B[A, C]$ becomes in coupled form

$$
\begin{align*}
& {\left[T^{\lambda_{1}},\left[U^{\lambda_{2}} \times V^{\lambda_{3}}\right]^{\Lambda_{23}}\right]_{M}^{\Lambda}=\sum_{\Lambda_{12}} U\left(\lambda_{1} \lambda_{2} \Lambda \lambda_{3} ; \Lambda_{12} \Lambda_{23}\right)\left[\left[T^{\lambda_{1}}, U^{\lambda_{2}}\right]^{\Lambda_{12}} \times V^{\lambda_{3}}\right]_{M}^{\Lambda}} \\
& +\sum_{\Lambda_{13}}(-1)^{\lambda_{3}+\Lambda-\Lambda_{13}-\Lambda_{23}} U\left(\lambda_{1} \lambda_{3} \Lambda \lambda_{2} ; \Lambda_{13} \Lambda_{23}\right)\left[U^{\lambda_{2}} \times\left[T^{\lambda_{1}}, V^{\lambda_{3}}\right]^{\Lambda_{13}}\right]_{M}^{\Lambda} \tag{A1.4}
\end{align*}
$$

where $U\left(\lambda_{1} \lambda_{2} \Lambda \lambda_{3} ; \Lambda_{12} \Lambda_{23}\right)$ denotes a Racah coefficient in unitary form (Rose 1957). In the same way, the Jacobi identity $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$ can be rewritten as

$$
\begin{gather*}
{\left[T^{\lambda_{1}},\left[U^{\lambda_{2}}, V^{\lambda_{3}}\right]^{\Lambda_{23}}\right]_{M}^{\Lambda}+\sum_{\Lambda_{31}}(-1)^{\lambda_{1}+\Lambda_{23}-\Lambda} U\left(\lambda_{2} \lambda_{3} \Lambda \lambda_{1} ; \Lambda_{23} \Lambda_{31}\right)\left[U^{\lambda_{2}},\left[V^{\lambda_{3}}, T^{\lambda_{1}}\right]^{\Lambda_{31}}\right]_{M}^{\Lambda}} \\
+ \tag{A1.5}\\
+\sum_{\Lambda_{12}}(-1)^{\lambda_{3}+\Lambda_{12}-\Lambda} U\left(\lambda_{1} \lambda_{2} \Lambda \lambda_{3} ; \Lambda_{12} \Lambda_{23}\right)\left[V^{\lambda_{3}},\left[T^{\lambda_{1}}, U^{\lambda_{2}}\right]^{\Lambda_{12}}\right]_{M}^{\Lambda}=0
\end{gather*}
$$

Appendix 2. Proofs of Iemmas 1 and 2 and of proposition 3

To prove equations (3.11) and (3.12), we proceed by induction over k. For the lowest value $k=1$, equation (3.11) reduces to (3.4). For $k>1$ we start from the identities

$$
\begin{equation*}
\left[A, L^{2 k}\right]^{1}=L^{2 k-2}\left[A, L^{2}\right]^{1}+L^{2}\left[A, L^{2 k-2}\right]^{1}+\left[\left[A, L^{2 k-2}\right]^{1}, L^{2}\right]^{1} \tag{A2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\left[A, L^{2 k-2}\right]^{1}, L^{2}\right]^{1}=2\left\{\left[A, L^{2 k-2}\right]^{1}+\sqrt{2}\left[L \times\left[A, L^{2 k-2}\right]^{1}\right]^{1}\right\} \tag{A2.2}
\end{equation*}
$$

resulting from equation (A1.4) and standard tensor algebra. Then, assuming equation (3.11) to be valid when k is replaced by $k-1$, we use it to compute the right-hand sides of equations (A2.1) and (A2.2). The result contains two tensor products that are not in the same standard form as those appearing on the right-hand side of (3.11) but they can be rewritten using the following identities:

$$
\begin{align*}
& {\left[L \times[L \times A]^{1}\right]^{1}=\frac{1}{3} L^{2} A-\frac{1}{2 \sqrt{2}}[L \times A]^{1}+\frac{1}{2} \sqrt{\frac{5}{3}}\left[[L \times L]^{2} \times A\right]^{1}} \tag{A2.3}\\
& {\left[L \times\left[[L \times L]^{2} \times A\right]^{1}\right]^{1}=-\frac{1}{4 \sqrt{15}}\left(3-4 L^{2}\right)[L \times A]^{1}-\frac{3}{2 \sqrt{2}}\left[[L \times L]^{2} \times A\right]^{1}} \tag{A2.4}
\end{align*}
$$

After some straightforward calculations equation (3.11) is obtained, provided that $x_{i}^{(k)}, y_{i}^{(k)}$, and $z_{i}^{(k)}$ satisfy equation (3.12).

The proofs of equations (3.13) and (3.14) are based upon the identities

$$
\begin{equation*}
\left[A, A^{2}\right]=-2 \sqrt{2} \sum_{k=0}^{\infty} a_{k} L^{2 k}[L \times A]^{1}+\sqrt{2} \sum_{k=0}^{\infty} a_{k}\left[A, L^{2 k} L\right]^{1} \tag{A2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[A, L^{2 k} L\right]^{1}=-\sqrt{2}\left[A, L^{2 k}\right]^{1}-\left[L \times\left[A, L^{2 k}\right]^{1}\right]^{1}-\sqrt{2} L^{2 k} A \tag{A2.6}
\end{equation*}
$$

resulting from equations (A1.4) and (3.1), as well as standard tensor algebra. Taking equations (3.11), (A2.3) and (A2.4) into account leads directly to the required results.

Finally, from equations (3.10), (3.11) and (3.13) it follows that for arbitrary constants a_{k} the condition $\left[A, C_{1 d}\right]^{1}=0$ is fulfilled provided that

$$
\begin{equation*}
\sum_{k=i+1}^{\infty} b_{k} x_{i}^{(k)}-u_{i}=\sum_{k=i+1}^{\infty} b_{k} y_{i}^{(k)}-v_{i}=\sum_{k=i+2}^{\infty} b_{k} z_{i}^{(k)}-w_{i}=0 \quad i=0,1,2, \ldots \tag{A2.7}
\end{equation*}
$$

By successive use of equations (3.14) and (3.12) these conditions can be rewritten as
$2 \sum_{k=i+1}^{\infty} b_{k}^{\prime} x_{i}^{(k)}=\sum_{k=i}^{\infty} a_{k}\left(2 x_{i}^{(k)}-x_{i-1}^{(k)}+2 \delta_{k, i}\right) \quad i=0,1,2, \ldots$
$2 \sum_{k=i+1}^{\infty} b_{k}^{\prime} y_{i}^{(k)}=\sum_{k=i}^{\infty} a_{k}\left(2 y_{i}^{(k)}-y_{i-1}^{(k)}+2 \sqrt{2} \delta_{k, i}\right) \quad i=0,1,2, \ldots$
$2 \sum_{k=i+2}^{\infty} b_{k}^{\prime} z_{i}^{(k)}=\sum_{k=i+1}^{\infty} a_{k}\left(2 z_{i}^{(k)}-z_{i-1}^{(k)}\right) \quad i=0,1,2, \ldots$
where $b_{k}^{t} \equiv b_{k}-\frac{1}{2} a_{k-1}$.
If we restrict ourselves to a K th-order deformation and assume that $b_{k}=0$ for $k>K+1$, conditions (A2.8a) and (A2.8b) reduce to two systems of $K+1$ equations (corresponding to $i=0,1, \ldots, K$) in $K+1$ unknowns $b_{k}^{\prime}, k=1,2, \ldots, K+1$, while condition (A2.8c) leads to a system of K equations (corresponding to $i=0,1, \ldots, K-1$) in K unknowns $b_{k}^{\prime}, k=2,3, \ldots, K+1$. It only remains to solve (A2.8a) and to check that its solution also satisfies the two remaining systems of equations. This calculation was carried out for $K=4$ and the results are contained in equation (3.15).

References

Beckers J, Debergh N and Quesne C 1995 Parasupersymmetric quantum mechanics with generalized deformed parafermions Preprint ULB-ULG
Biedenharn L C 1961 J. Math. Phys. 2433
Bohm A 1979 Quantum Mechanics (Berlin: Springer) p 146
Bonatsos D, Daskaloyannis C, Kolokotronis P and Lenis D 1994 Nonlinear extension of the $\mathbf{u}(2)$ algebra as the symmetry algebra of the planar anisotropic quantum harmonic oscillator with rational ratio of frequencies and 'pancake' nuclei Preprint NUCL-TH/9412003
Celeghini E, Giachetti R, Sorace E and Tarlini M 1991 J. Math. Phys. 321159
Chakrabarti A 1993 J. Math Phys. 341964
Debergh N and Nikitin A G 1995 Parasupersymmetric quantum mechanics with an arbitrary number of parasupercharges and orthogonal Lie algebras Helv. Phys. Acta at press
de Boer J and Tjin T 1993 Commun. Math. Phys. 158485
de Vos K and van Driel P 1993 The Kazhdan-Lusztig conjecture for finite W-algebras Preprint hep-th/9312016
Drinfeld V G 1986 Proc. Int. Congr. of Mathematicians (Berkeley, CA) ed A M Gleason (Providence, RI: AMS) p 798
Elliott J P 1958a Proc. R. Soc. A 245128

- 1958b Proc. R. Soc. A 245562

Fairlie D B and Nuyts J 1994 J. Math. Phys. 353794
Fairlie D B and Zachos C K 1991 Phys. Lett. 256 B 43
Gaskell R, Peccia A and Sharp R T 1978 J. Math. Phys. 19727
Gavrilik A M 1993 Theor. Math. Phys. 95546
Gavrilik A M and Klimyk A U 1991 Lett. Math, Phys. 21215
Granovskii Ya I, Zhedanov A S and Lutsenko I M 1992 Theor. Math. Phys. 91604
Higgs P W 1979 J. Phys. A: Math Gen. 12309
Jimbo M 1985 Lett. Math. Phys. 1063
Karassiov V P 1994 J. Phys. A: Math. Gen. 27153
Karassioy V P and Klimov A B 1994 Phys. Lett. 191A 117
Leemon H I 1979 J. Phys. A: Math. Gen. 12489
Naimark M A 1964 Linear Representations of the Lorentz Group (New York: Pergamon)
Polychronakos A P 1990 Mod. Phys. Lett. A 52325
Quesne C 1994 Phys. Lett. 193A 245
Roček M 1991 Phys. Lett. 255B 554
Rose M E 1957 Elementary Theory of Angular Momentum (New York: Wiley)
Schoutens K, Sevrin A and van Nieuwenhuizen P 1989 Commun. Math. Phys. 12487
Tjin T 1992 Phys. Lett. 292B 60
Ui H 1970 Prog. Theor. Phys. 44153
Weaver L and Biedenharn L C 1972 Nucl. Phys. A 1851
Weaver L, Biedenharn L C and Cusson R Y 1973 Ann. Phys., NY 77250
Zamolodchikov A B 1986 Theor. Math. Phys. 651205

[^0]: \dagger Directeur de recherches FNRS.
 \ddagger E-mail: cquesne@ulb.ac.be

