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I. Phys. A: Math. Gen. 28 (1995) 2847-2860. hinted in the UK 

On some nodhear extensions of the angular momentum 
algebra 

C Quesnett 
Physique Nucl6ak Thhrique et Physique Mathdmtique, Universit€ Libre de Bnuelles, 
Campus de la Plaine CP229, Bd du Triomphe, B1050 Bmssels, Belgium 

Received 7 October 1994 

Abshact Deformdons of the Lie algebras s0(4), so(3,l) and e(3) that leave their so(3) 
subalgebra undefmed and preserve their coset stmchue are wnsidered. It is shown that such 
deformed algebras are associative for any choice of the deformation parameters. Their Casimir 
operators are obtained and some of their unitary irreducible representations are constructed. Foi 
vanishing deformation, the unitary irreducible representations of the deformed algebras transform 
into those of the corresponding Lie algebrasthat contain each of the so(3) unitary irreducible 
representations at most once. It is also proved that similar deformations of the Lie algebras 
su(3). sI(3.R) and of the semidirect sum of an Abelian algebra t(5) and so@) do not lead to 
associative algebras. 

1. Intrdnction 

In recent years many works have been devoted to the study of deformations and extensions 
of Lie algebras and their applications in various branches of physics. Some of the studies 
have been are carried out in the mathematically well-defined framework of quasi-triangular 
Hopf algebras and deal with the so-called quantum groups and q-algebras (Drinfeld 1986, 
Jimbo 1985); other studies put less emphasis on the coalgebra structure, which is often 
dropped completely, but instead insist on preserving some other property of the Lie algebra 
that is deformed. In this second category one finds, for instance, some deformed algebras 
that can be realized in terms of deformed creation and annihilation operators (Fairlie and 
Zachos 1991, Fairlie and Nuyts 1994). 

In the same class there are also deformed algebras that have a coset structure gd = h + Vd 

and which can be viewed as nonlinear extensions of an ordinary Lie algebra h (Rokk 1991). 
This means that their generators can be separated into the generators Ej of h and some 
operators Ea transforming as a representation of h,  and commuting among themselves to 
give a function of the E;’s only. In other words, they satisfy the commutation relations 

[E; ,  Ejl = c;& [Et ,  Ea1 = ( ~ i ) i E , a  [E, ,  Eg1 = fao(St) (1.1) 

where c$ and (z;)! are the structure constants and matrix representations of h respectively, 
while fap(Ei) are formal power series in the Er’s that are constrained by the associativity 
requirement, i.e. Jacobi identities, and by the condition that for some limiting values of the 
parameters, gd transforms into some Lie algebra g with coset structure g = h + U. The 
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2848 C Quesne 

simplest example corresponding to h = u(1) and g = su(2) or su(1,l) has been discussed 
in detail (Polychronakos 1990, RoEek 1991). 

An interest in such constructions in the infinite-dimensional case was shown some years 
ago in the context of quantum field theory and statistical physics models where they are 
known as W-algebras (Zamolodchikov 1986, Schoutens et a1 1989). More recently, finite 
versions of these W-algebras have been introduced by considering symplectic reductions of 
finitedimensional simple Lie algebras (Tjin 1992, de Boer and Tjin 1993); in particular, it 
was shown that the finite W:)-algebra, known as W, , IS related to the simplest example 
of the deformed algebra gd mentioned above. 

The mf)-algebra has recently appeared in various physical problems. Let us mention 
three of them. First, the deformed su(2) (or su(1,l)) algebra may be considered as 
a dynamical symmetry algebra in some quantum many-body models with symmetry- 
preserving Hamiltonians, such as those occurring in quantum optics (Karassiov 1994, 
Karassiov and Klimov 1994 and references quoted therein); second, it is related to 
generalized deformed parafennions and, through the infzoduction of a Fermi- like oscillator 
Hamiltonian, provides a new algebraic description of the bound-stab spectra of the 
Morse and Pdschl-Teller potentials (Quesne 1994). Moreover, by superposing these 
generalized deformed parafennions with ordinary bosons, one obtains some deformations 
of parasupersymmetric quantum mechanics with new and non-trivial properties (Bakers 
et al 1995). Further, the algebra wf) may be considered as the symmetry algebra of the 
two-dimensional anisotropic harmonic oscillator with frequency ration 21 (Bonatsos et ai 
1994). 

Motivated by these applications, in this paper we shall consider another class of examples 
of deformed algebras ga that should be physically relevant. The class corresponds to the 
case where the undeformed subalgebra h is the angular momentum algebra so(3) and the 
deformed subspace ud is spanned by the ZA + 1 components of an so(3) irreducible tensor 
of rank A. Special emphasis will be laid on the vector (A = I) and quadrupole (A = 2) 
cases, corresponding to deformations of so(4) and su(3) (or of their non-compact or non- 
semisimple variants) respectively. 

In the following section, the relevant associativity conditions are established. The vector 
and quadrupole cases are then studied in detail in sections 3 and 4 respectively. Finally, 
section 5 contains the conclusion. 

-0) . 

2. Nonlinear extensions of so(3) 

Let the generators Ei and Ee, introduced in the previous section, be the spherical 
components L, = (-l)’”L!.,. m = + I ,  0, -1, and T,” = (-l)&T:;, p = A ,  A-1, ..., - A, 
of an angular momentum operator and of an irreducible tensor of integer rank A respectively. 
In such a case it is advantageous to write equation (1.1) in a coupled commutator form: 

[L, LIL = - A L ,  

[L TA]: = - ~ J A . A J M . ~  Tp A 

(2. la) 

(2.16) 

[TA, TA]; = fm (2.k) 

where f “(L)  is an irreducible tensor of rank A, whose components can be written as formal 
power series in the vector operator L. The definition of coupled commutators and some of 



Nonlinear extensions of angular momentum algebra 2849 

their properties are reviewed in appendix 1. From~equation (A1.2) it can be seen that the 
values of A in equation (2lc) are restricted to odd integers, A = 1,3,. . . , W - 1. 

It has been shown by Gaskell et al (1978) that The number of linearly independent 
irreducible tensors of rank A whose components are monomials of degree n in L is equal 
to one if n = A + 2k, k = 0,1,2, . . ., and zero otherwise. Hence, the explicit form of the 
functions f$L) is given by 

A 
fk(L) = yAgA(Lz) [...[[L X LIZ X LIS X ...I M = 1.3, ...,a- 1 (2.2) 

where y, is some real normalization constant, yA = 1 for A # 1, 

m 
g A  (5’) = C af)L2 af) E R a t )  = +I, 0, or - 1 (2.3) 

k=Q 

is a formal power series in the scalar operator Lz = C,(-l)mL,,,L-,, and the last factor 
on the right-hand side of (2.2) is a ‘stretched‘ product of A operators L. The deformed 
algebra gd is therefore a (2K + 1)th-degree algebra where K = 0,1,2,  . . ., provided that 
af) = 0 if 2k+A > 2K + l  and at least oneaf) with2kfA = 2K+1 is different from 
zero. As K = 0 corresponds to an ordinary Lie algebra we shall henceforth refer to K as 
the deformation order. 

We shall be concemed here with the cases where T A  is an irreducible tensor of rank 1 
(vector operator) or rank 2 (quadrupole operator). In the former case, we shall denote Td 
by A,,,, m = f l ,  0, -1; in equation (2.14 A then takes the single value A = 1. In the 
latter case, we shall denote T,” by Qp, p = +2, +l,O, -1, -2; in equation (2.lc), A can 
then take the values A = 1 and A = 3. For future reference it is helpful to state some 
relations among linearly dependent irreducible tensors: 

I [L  x LI; = --LZ (2.4a) 
d3 

Jz (2.4b) 
1 [ L  x LIA = --L,,, 

2 5  T 2 1  2 
[ [ L  x L1 x L]  = --LZL,,, + - -L, “ J T J  (2.4~) 

The deformed algebra generated by L,  and T,” will be associative provided 
commutators (2.1) satisfy the Jacobi identity. For three irreducible tensors TAl,  UAz and VA2, 
of ranks A I ,  AZ and AS, respectively, the Jacobi identity can be written in a coupled form, 
as shown in equation (A1.5). If (TAl,  U*’, VA3) = ( L ,  L ,  L), ( L ,  L, T A )  or ( L ,  T A ,  T A )  
equation ( A 1 3  is automatically satisfied, whereas if (TA>,  UAz, Va3) = (TA,  T A ,  T A )  it 
leads to the set of conditions 

A23 = 1 , 3  ,... , 2 A -  1 A = IA-  A u l ,  Ih- A=[ + 1 , . . . , A +  A u  (2.5) 
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where U(MAA; A d z )  denotes a Racah coefficient in unitary form (Rose 1957). Note 
that for simplicity we shall now drop the component label of all irreducible tensors. 

By using the numerical values of Racah coefficients one finds that the set of 
conditions (2.5) reduces to a single independent condition 

[ A ,  [ A ,  A]']' = 0 (2.6) 

in the vector case, and to two independent conditions 

[Q, IQ, Q1'I3 - 2 [ Q 3  IQ2, QI3l3 = O  (2.76) 

in the quadrupole case. In the next two sections we shall determine whether these identities 
are satisfied when the inner commutators are given by equations (Z.lc), (2.2) and (2.3). 

3. The vector case 

In the vector case the deformed algebra gd is defined by the commutation relations 

[ L ,  Ll' = -&L 

[L,  A]" = -2/ZS*.lA 

(3.1~) 

(3.lb) 

(3.1~) 

where the normalization constant y~ has been set equal to -fi. A Kth-order deformation 
corresponds to a K  # 0 and aK+l = aK+* = . . . = 0. 

3.1. Associativity condition 

The algebra gd is associative provided A satisfies equation (2.6). By using equations (3.1) 
and (A1.4), equation (2.6) can be rewritten as 

0 
[[A, g(Lz)]'  x L] = 0. (3.2) 

In the undeformed case where g(Lz) = 00 this condition is trivially fulfilled and gd 
then reduces to an ordinary Lie algebra g. According to whether a0 =+I ,  -1 or 0, g is the 
orthogonal algebra so(& the pseudo-orthogonal algebra so(3.1) or the Euclidean algebra 
e(3), which is a semidirect sum of an Abelian algebra t(3) and so(3) (Bidenham 1961, 
Naimark 1964, B6hm 1979). 

For a first-order deformation, condition (3.2) reduces to 

[ [ A ,  Lz]' x L]' = 0. (3.3) 

From equations (2.4a), (A1.4). (3.lb) and (Al.1) one obtains 

[A.L2] '  = 2 [ A + + h [ L x A ] ' } .  (3.4) 
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Moreover, standard tensor algebra and recoupling techniques (Rose 1957) show that 

1 
(3.5) [[L x AI' x L]' = [ L  x [L x AI']'= [[L x L] 1 0  x A ]  = --Jz[L x AIo 

where, in the last step, use has been made of equation (2.4b). By introducing equations (3.4) 
and (3.5) into the left-hand side of equation (3.3) one finds that the latter is identically 
satisfied. 

It is now an easy task to show that if condition (3.2) is fulfilled for a Kth-order 
deformation then it is also satisfied for a (K+ 1)th-order deformation. From equation (A1.4) 
one indeed obtains 

[[A,L2k+Z]' x L ] o =  [PX [A .L2] ' ] '  x L ] O + [ [ [ A , L 2 ] '  X L 2 ] ' X L ]  0 

(3.6) 
= L * [ [ A , L ' ] '  x L ] ' + [ [ A , L 2 ] '  X L ] ' L 2 .  

Hence, if the relation 

0 
[ [ A ,  LX]' x L ]  = 0 (3.7) 

is identically satisfied for k = K, then the same is true for k = K + 1. This completes the 
proof by induction of the following result. 

Proposition 1. For any choice of the deformation parameters ak, k = 1,2, ..., 
equation (3.1) defines an associative algebra gd, which is a deformed so(4), so(3,l) or e(3) 
algebra according to whether a0 = f l ,  -1 or 0. 

Remark 1. The first-order deformation of so(4) has already been encountered elsewhere. 
It is indeed the dynamical symmetry algebra of a particle moving in a three-dimensional 
space with constant curvature under the influence of a Coulomb potential (Higgs 1979, 
Leemon 1979, Granovskii et al 1992, de Vos and van Driel 1993). In such a case the 
deformation parameter al is related to the space curvature. 

3.2. Casim'r operators 

It is well known that the Lie algebras g = s0(4), so(3,l) and e(3) have two independent 
Casimir operators, which may be written as 

CI = q L Z + A 2  C 2 = L . A  (3.8) 

where, as usual, L . A denotes the scalar product xm(- l )mL,A-m.  The purpose of this 
subsection is to show that the operators (3.8) can be deformed so as to provide Casimir 
operators of the deformed algebra gd. 

The case of the second Casimir operator is easily solved. One finds the following result. 

Proposition 2. When transforming from g = so@), so(3,l) or e(3) to gd, defined in (3.1), 
the operator L . A remains a Casimir operator, which we shall denote by Ca. 
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Proof. By using (A1.4), (3.1) and (A1.2) one obtains 

(3.9) 

This completes the proof as, by construction, L . A commutes with L. 0 

The case of the first Whir operator is more involved and has not actually been 
solved in full generality. We conjecture that (i) for any choice of the real constants U,, in 
equation (3.1) it is possible to find some real constants bk, k = 1 , 2 , .  . ., such that 

CO 

Cld = h(zZ) + A ~  where h ( ~ ~ )  = Cbr~= (3.10) 

is a Casimir operator of the deformed algebra gd, and (ii) for a Kth-order deformation these 
constants are such that bk = 0 for k > K + 1. We shall now proceed to prove that this 
conjecture is at least valid up to fourth order in the deformation. 

For such a purpose we have first to determine the commutators of L2 and A2 with A. 
We state the results i n  the form of two lemmas. 

Lemma 1. For any k E M+ the generators of the deformed algebra gd, defined in (3.1). 
satisfy the relation 

k l  

k-l k-I X-2 

i=O i=O i=o , 

[A,LW]' = C x j k ) L z A + C y j r ) L 2 [ L  x A]' +Cz jk )Lz ' [ [L  X LIZ X A]' (3.11) 

where x y ) ,  y y ) ,  i = 0,1,. . . . k - 1, and $), i = 0.1, . . . , k - 2, are some real constants 
fulfilling the recursion relations 

xi (k) 2 - Q-1)  I + x ! k - l )  + $ & y ~ ~ l ) f ~ i , k - l  i = o , 1 ,  ..., k - 1  (3.12~~) 

Yi - (k) - 245.q-1' + yi ('-') - &Zj 3 (k-1) f y ~ ~ ' )  + z&Zj!il) + 2fi8i.k-I~ 

i = 0,1,. . . , k - 1 

zi - - 3 Yi (k- l )  -$-I) + zE~') 
and the conditions x f )  = 2, y t )  = 2 d ,  

Lemma 2.  The generators of the deformed algebra gd, defined in (3.1), satisfy the relation 

(3.12.b) 

( 3 . 1 2 ~ )  i = 0, 1,. , , , k - 2 

m CO W 

[ A , A Z I 1  = - C u i L 2 i A - C v i L u [ L x A ] ' - C w i L 2 i [ [ L x L ] 2  x A]' (3.13) 
i=O id i=O 

where ui, uj and wi are some real constants defined by the formal series 

(3.14b) 
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Table 1. Solution ai the recursion relations (3.12) up io k = 5. 

i.=o i = l  i = 2  i = 3  i = 4  

2853 

4 

645 
4 4  

4 
8 
1245 

16 

1 6 8  

32 

2445 

4845 

f 

7 

4 a  

8845 

445 
- 

26& 

224 
3 
- 

1 6 a  

Y 
248& 

3 2 4  4 8 ~ 6  1 6 0 8  4 0 8  - 

in terms of the solution of equation (3.12). 

for xp’, yf’ and $), k < 5 ,  by solving equation (3.12) are listed in table 1.  

details see appendix 2). 

The proofs of lemmas 1 and 2 are sketched in appendix 2 and the solutions obtained 

Finally, by combining lemmas 1 and 2 the following result can be easily derived (for 

Proposition 3. Up to fourth order in the deformation, the operator Cld defined in 
equation (3.10). where 

1 4 1 8 5 16 15 4 b 3 = 1 a  + - a 3 - - q  
(3.15) bl =as +a1 b2 = + -a2 3 - -a3 + -a 3 3  3 15 

1 64 = $a3 + 2a4 b5 = 3a4 , bg = b7 = . . . = 0 
is a Casimir operator of the algebra gd defined in (3.1). 

3.3. Unitary irreaucible representations 
In this subsection we will study the deformations of some unitary irreducible representations 
(unirreps) of the Lie algebras g = so(4). so(3,l) and e(3) when the algebras are replaced 
by their corresponding deformed algebras gd. 

The unirreps considered are those which have a representation space R that contains each 
of the representation spaces R’, 1 = O , , i ,  1 ,  ?j, . . .. of s o p )  at most once (Biedenham 1961, 
Naimark 1964, B6hm 1979). Such unmeps a n  be characterized by 

6) fp.41 where p > 141, and p .  141 E PI or p .  141 E iN, in the so@) case; 
( i i ) (Zo ,c)wheree i therE~E{O,~, I ,~  ,... }andcEI [$ ,o rZo=Oandc= iu ,uEB, in  

(iii) (lo, E )  where 10 E { 0,  i, 1 . 2 ,  . . .} and E E R, in the e(3) case, where the latter are 

In cases (i) and (ii) (or (iii)) the decomposition of their representation space is given by 

the so(3.1) case: 

obtained from those of so(3,l) by an Inonii-Wigner contraction. 

m 

(3.166) 
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where in (3.16a) the minimum 1 value is defined by 10 = 141 and the maximum 1 value is 
defined by 11 = p. 

The reduced matrix elements of the vector operator A and the eigenvalues of the Casimir 
operators can be written ast 

. 

(3.17) 

(3.18) 

(3.21) 

and 

(Cl) = 2 (C,) = -10€ (3.22) 

for e(3). In all cases the remaining reduced mairk elements of A can be obtained from the 
relation 

valid for any vector operator. 
By introducing the function G(Z2, I,”),  defined by - 

(3.23) 

(3.24) 

= a0 + $21 (P + I;  - 1) + faz ((12 - 1)Z + 1,2(12 - 1) +&E; - l)] + ‘ ‘ 
for 1 > Io, we easily find the following results. 

tThephaseconventionadoptedinUlispaperisthatofBiedenham(1961)whichdiffersfromthatofNaimarlt(1964) 
and B6hm (1979). 
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Proposition 4. Provided that the deformation parameters ax k > 0, are chosen in such a 
way that all quantities under square roots remain non-negative, then the unirreps [ p ,  41, 
(lo, c)  and (lo, €1 of s0(4), so(3,l) and e(3) respectively, can be deformed into uniri.eps 
of the corresponding deformed algebras gd. The reduced matrix elements of A and the 
eigenvalues of the Casimir operators become 

(3.27) 

and 

( C l d )  = h + 1)) - (10 + l)G ((lo + I)’, lo’) + C2 

2 
= (Cl) + $2110” (lo” - 1) + fa210” (lo” - 1) + ” ’  

(C,) = (C,) = -1oc (3.28) 

in the deformed so(3.1) case, while for deformed e(3) they can be obtained by substituting 
E for c in equations (3.27) and (3.28). 

Proof. Whenever all uk’s for which k > 0 go to zero, equations (3.25)-(3.28) and their 
counterparts for e(3) transform into the undeformed results contained in equations (3.17)- 
(3.22) respectively. Altematively, for arbieary values of the uk’s satisfying the hypothesis 
the validity of the equations can be checked by direct substitution into the commutation 
relation (3.1~) and the definitions of Cld and C2d. U 

Remark. For some choices of the deformation parameters it may happen that the unirreps 
of gd considered in proposition 4 do not exhaust the class of unirreps which have a 
representation space that contains each of the representation spaces of so(3) at most once. 
The existence of ‘extra’ representations, which have no counterpart for the undeformed 
algebra, has already been noted in the deformed su(2) case (RoEek 1991). 
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4. The quadrupole case 

In the quadrupole case the deformed algebra gd is defined by the commutation relations 

(4.1~) 

(4.lb) 

(4.1~) 

where associative 
providing that Q satisfies equations (2.7~) and (2.7b). 

In the undeformed case where the algebra gd reduces to an ordinary Lie algebra g, one 
has uf) = 0, k = 1,2, . . ., and u f )  = 0, k = 0,1, . . .. According to whether uf) = +1, 
-1, or 0, g is the special unitary algebra su(3) (Elliott 1958a,b), the special linear algebra 
sl(3,R) (Weaver and Biedenham 1972) or the semidirect sum of an Abelian algebra t(5) and 
so(3) (Vi 1970, Weaver et ul 1973). 

If we restrict ourselves to a first-order deformation, equations (4.1~) and (4.14 become 

: normalization constant y~ has been set equal to 3 f i .  The algebra 

(4.W 

(4.2b) 

where a, B and E are defined by a = 3 f i u f ) ,  B = uf) and E = U$) = +1, -1 or 0. 
By substituting equations (4.24 and (4.2b) into equations (2.7a) and (2.76) and taking 
equation (4.lb) into account we obtain the two associativity conditions 

Straightforward tensor algebra leads to the following results: 

[ Q , L Z L ] " = 2 ~ { [ ~ - U ( 1 1 A 2 ; 1 2 ) ] [ L  x Q]" 

+&.U(llA2;22)[[L x L] 'x  e]") 

[ Q , [ [ L  ~ ~ l z ~ L ] 3 ] h = ~ { [ ~ U ( 2 2 A l ; 2 3 )  

- Z J m U ( Z 2 A l :  A3)U(21Al: 22)] [ L  x Q]" 

+3-hU(ZlA2; 23) [[L x L]' x e]"} (4.4) 
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valid for A = 1 or 3. By replacing Racah coefficients by their numerical values in 
equation (4.4), conditions (4.34 and (4.36) can be rewritten as 

(4.5a) ( 6 f i a  - 78) [L x el' + & ( 2 f i ( Y  + 78) [ [ L  x LIZ x e] I = 0 

2 ( f i u  + 38) [ L  x QI3 + (ma - (4.5b) 

Since they cannot be satisfied for any choice of the deformation parameters (Y and 8 we 
conclude that for a first-order deformation the algebra gd, defined in (4.1), is not associative 
contrary to what occurs for the algebra (3.1) in the vector case. Therefore, we shall not 
pursue the analysis of the quadrupole case any further. 

5. Conclusion 

In this paper we have established that deformations of the Lie algebras s0(4), SO(3,l) 
and e(3) that leave their so(3) subalgebra undefomed and preserve their coset structure 
exist. We have proved that the Casimir operators of these Lie algebras can be deformed 
so as to provide the corresponding operators for the deformed algebras. Moreover, we 
have constructed those unirreps of the deformed algebras that, for vanishing deformation, 
transform into the unirreps of the corresponding Lie algebras belonging to an important 
class of representations. 

In contrast, we have shown that a similar deformation of the Lie algebras su(3). sI(3,R) 
and of the semidirect sum of t(5) and so(3) is not possible because the associativity 
conditions are violated for a first-order deformation. 

It should be stressed that the deformations of so(4), so(3,1), and e(3) studied here 
differ from the standard q-algebras soq(4), so,(3,1) and eq(3) (Drinfeld 1986, Jimbo 1985, 
Celeghini etal 1991, Chakrabarti 1993), as well as from an alternative deformation of the 
orthogonal and pseudo-orthogonal Lie algebras proposed by Gavrilik and Klimyk (1991) 
(see also Gavrilik 1993). In both these approaches, the so(3) subalgebra is indeed deformed 
contrary to what OCCUIS in the algebras considered here. Since rotational invariance and 
angular-momentum conservation are important properties of many physical systems, one 
may hope that the deformed algebras introduced in this paper will prove more relevant to 
applications than those previously considered. 

Some problems where the coset structure so@) and/or so(3) is important can be 
found in standard quantum mechanics (e.g. that of a particle in a Coulomb potential 
(Biedenham 1961)). as well as in parasupersymmetric quantum mechanics with three 
parasupercharges (Debergh and Nikitin 1995). Deformations of so(4) preserving that coset 
structure may therefore be expected to play a role in similar contexts. It is already 
known that the first-order deformation of so@) is the symmetry algebra of a particle in 
a Coulomb potential when the space has a constant curvature (Higgs 1979, Leemon 1979, 
Granovskii et ul 1992, de Vos and van Driel 1993). All of the general results derived 
in this paper, therefore, apply to such a problem. At a more phenomenological level, 
deviations from hydrogenic spectra that are found for many-electron atoms or excitons 
in semiconductors might be accounted for by some deformations of so(4). Similarly, 
deformations of parasupersymmetric quantum mechanics with three parasupercharges might 
lead to some parasupersymmetric Hamiltonians with new and non-trivial properties as 
happens in the case of two parasupercharges (Debergh and Nikitin 1995). We hope to 
retum to some of these problems in forthcoming publications. 
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Appendix 1. Definition and properties of coupled commutators 

The purpose of this appendix is to review the definition and some useful properties of 

The coupled commutator of two so(3) irreducible tensors TA] and UA2, of ranks A1 and 
coupled commutators. 

hz respectively, is defined by 

[T^', uAz]; = C ( A ~ M , A ~ ~ I A M )  [T;:', U;] (Al.l) 

in terms of an ordinary commutator [ , ] and of an su(2) Wigner coefficient ( , I ). By using 
a symmetry property of the Wigner coefficient (Rose 1957) equation (Al.l) can be written 
alternatively as 

PIM 

where 

(A1.3) 

For three irreducible tensors Til, UAz and VA3 the well known relation [ A ,  BC]  = 
[ A ,  SIC + B [ A ,  C] becomes in coupled form 

(A1.4) 

where U(hlAzAX3; A ~ Z A Z )  denotes a Racah coefficient io unitary form (Rose 1957). In the 
same way, the Jacobi identity [A, [ B ,  Cll+ [ B ,  [C, A ] ]  + [C, [ A ,  B ] ]  = 0 can be rewritten 
as 

(A1.5) 

Appendix 2. Proofs of lemmas 1 and 2 and of proposition 3 

To prove equations (3.11) and (3.12). we proceed by induction over k. For the lowest value 
k = 1, equation (3.11) reduces to (3.4). Fork > 1 we start from the identities 

[ A ,  LZI]' = L"-'[A, L2]' + L2 [ A ,  LZI-']' + [[A, L%-']' , LZ]I (A2.1) 



Nonlinear extensions of angular momentum algebra 2859 

and 

[ [ A ,  L*-']' , L2]' = 2  [ [ A ,  L"-']' + Z/z [L x [ A ,  L*-']']') (A2.2) 

resulting from equation (A1.4) and standard tensor algebra. Then, assuming equation (3.11) 
to be valid when k is replaced by k - I ,  we use it to compute the right-hand sides of 
equations (A2.1) and (A2.2). The result contains two tensor products that are not in the 
same standard form as those appearing on the right-hand side of (3.11) but they can be 
rewritten using the following identities: 

I 1  1 1 [L  x [L x A ] ' ]  =--L'A - -[Lx A]' + 
3 2 J z  

1 '  1 3 [L x [ [ L  x LIZ x A ]  ] = - (3 - 45') [ L  x A]' - - [ [ L  x 4' x A ] ' .  (A2.4) m 2 J z  
(k )  (k)  After some straightforward calculations equation (3.11) is obtained, provided that xi , yi , 

and z p )  satisfy equation (3.12). 
The proofs of equations (3.13) and (3.14) are based upon the identities 

m 

[ A ,  A'] = -2Z/zF:nkL*[L x A]' + h z a k  [ A ,  L2*L]' (A2.5) 
k=O k=O 

and 

[ A ,  L*L]' = -&[A, L%]' - [L x [ A ,  L2L]I]1 - Z/zL*A (A2.6) 

resulting from equations (A1.4) and (3.1), as well as standard tensor algebra. Taking 
equations (3.11), (A2.3) and (A2.4) into account leads directly to the required results. 

Finally, from equations (3.10), (3.11) and (3.13) it follows that for arbitrary constants a k  

the condition [ A ,  Cld]' = 0 is fulfilled provided that 
m m m 

bkxy) - ui = bk$) - vi = bkzy) - mi = 0 i = 0, 1,2, .  . . . (A2.7) 
k=i+l k=i+l k=i+2 

By successive use of equations (3.14) and (3.12) these conditions can be rewritten as 

(A2.8~) 

(A2.8b) 

(A2.8~) 

where b; E bk - $ 2 - 1 .  

If we restrict ourselves to a Kth-order deformation and assume that bk = 0 fork > K+1, 
conditions (A2.80) and (A2.8b) reduce to two systems of K + 1 equations (corresponding 
to i = 0, 1, . . . , K) in K + 1 unknowns bk, k = 1,2,. . . , K + 1, while condition (A2.8~) 
leads to a system of K equations (corresponding to i = 0,1,. . . , K - 1) in K unknowns 
b;, k = 2,3, . . . , K + 1. It only remains to solve (A2.8~) and to check that its solution 
also satisfies the two remaining systems of equations. This calculation was carried out for 
K = 4 and the results are contained in equation (3.15). 
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